Insight into trichomonas vaginalis genome evolution through metabolic pathways comparison
نویسندگان
چکیده
Trichomonas vaginalis causes the trichomoniasis, in women and urethritis and prostate cancer in men. Its genome draft published by TIGR in 2007 presents many unusual genomic and biochemical features like, exceptionally large genome size, the presence of hydrogenosome, gene duplication, lateral gene transfer mechanism and the presence of miRNA. To understand some of genomic features we have performed a comparative analysis of metabolic pathways of the T. vaginalis with other 22 significant common organisms. Enzymes from the biochemical pathways of T. vaginalis and other selected organisms were retrieved from the KEGG metabolic pathway database. The metabolic pathways of T. vaginalis common in other selected organisms were identified. Total 101 enzymes present in different metabolic pathways of T. vaginalis were found to be orthologous by using BLASTP program against the selected organisms. Except two enzymes all identified orthologous enzymes were also identified as paralogous enzymes. Seventy-five of identified enzymes were also identified as essential for the survival of T. vaginalis, while 26 as non-essential. The identified essential enzymes also represent as good candidate for novel drug targets. Interestingly, some of the identified orthologous and paralogous enzymes were found playing significant role in the key metabolic activities while others were found playing active role in the process of pathogenesis. The N-acetylneuraminate lyase was analyzed as the candidate of lateral genes transfer. These findings clearly suggest the active participation of lateral gene transfer and gene duplication during evolution of T. vaginalis from the enteric to the pathogenic urogenital environment.
منابع مشابه
Transcriptomic Identification of Iron-Regulated and Iron-Independent Gene Copies within the Heavily Duplicated Trichomonas vaginalis Genome
Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection, proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened ...
متن کاملGenetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis
Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of mu...
متن کاملTrichomonas vaginalis: current understanding of host-parasite interactions.
Trichomonas vaginalis is a sexually transmitted obligate extracellular parasite that colonizes the human urogenital tract. Despite being of critical importance to the parasite's survival relatively little is known about the mechanisms employed by T. vaginalis to establish an infection and thrive within its host. Several studies have focused on the interaction of the parasite with host cells and...
متن کاملAnalysis of the Sam50 translocase of Excavate organisms supports evolution of divergent organelles from a common endosymbiotic event
As free-living organisms the ancestors of mitochondria and plastids encoded complete genomes, proteomes and metabolomes. As these symbionts became organelles all these aspects were reduced - genomes have degenerated with the host nucleus now encoding the most of the remaining endosymbiont proteome, while the metabolic processes of the symbiont have been streamlined to the functions of the emerg...
متن کاملDraft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis.
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from...
متن کامل